首页> 外文OA文献 >Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States
【2h】

Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States

机译:高定向电子态的能带工程在大体积半导体中的低维输运和大热电功率因数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications.
机译:热电技术有望解决能源问题,但效率低下仍然阻碍了热电技术的开发。到目前为止,通过降低热导率已经取得了很大的进步,但是通过最大化功率因数却取得了很少的进步。后者对能带结构提出了明显矛盾的要求:窄的能量分布和低的有效质量。建议将纳米结构中的量子限制和引入共振态作为解决这一悖论的可能方法,但是成功有限。在这里,我们提出了一种新颖的方法来满足体半导体中的这两个要求。它利用某些轨道的高度方向性来设计能带结构,并产生类似于纳米结构中目标的低维传输,同时保留各向同性的特性。使用第一原理计算,在Fe2YZ Heusler化合物中证明了理论概念,在室温下产生的功率因数是经典热电学的4至5倍。我们的发现是完全通用的,并且合理地寻找了具有类似行为的替代化合物。除了热电之外,这些在电子,超导或光伏应用中也可能是相关的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号